black_box_365 (black_box_365) wrote,
black_box_365
black_box_365

Непонятно над чем ломали голову Аристотель и Галилей.

Нам тут подбрасывают ))



Впервые о парадоксе колеса заговорили ещё до Аристотеля, однако он первый вплотную занялся его изучением. Затем над решением этой задачки бился Галилео Галилей.

Суть парадокса состоит в следующем:

Имеем два колеса разного размера, расположенных одно в другом. Оба колеса синхронно катятся и проходят определённое расстояние. Вопрос заключается в следующем: пройдут ли оба колеса одинаковый путь?



Если вы внимательно посмотрите на гифку вверху, то заметите – оба колеса полностью совершают оборот по всей своей окружности, чтобы преодолеть одно и то же расстояние (см. на красную линию). А также очевидно, что одна окружность меньше другой. Это означает, что, либо колёса имеют одинаковую окружность (что в корне неверно), либо разные окружности «разворачиваются» на одинаковую длину (чего быть никак не может).

А если представить, что всё это правда? Тогда технически возможно, что колесо с окружностью в 2,54 сантиметра в состоянии пройти тот же путь за один оборот, что и колесо с окружностью, равной 1,6 километров.

Но такого просто не бывает. Длина окружности с меньшим радиусом не может быть равна длине окружности с большим радиусом. Так в чём же дело?

Давайте проследим маршрут, который проходит каждая точка окружности от начала красной линии до её конца. Перемещайте свой палец по линии, обозначающей радиус круга, одновременно следя за траекторией, которую проходит малая окружность от начала пути до конца.

Затем проследите траекторию, которую проходит большая окружность от начала пути до конца. Очевидно, что точка на большей окружности проходит бо́льшую траекторию, а, следовательно, больший путь, чтобы добраться до той же точки.

Иначе говоря, можно ехать в Москву из Нижнего Новгорода через Владимир, а можно через Архангельск или Астрахань. Расстояние от Нижнего до Москвы остаётся неизменным, но пути, которые придётся проделать по этим маршрутам, далеко не одинаковы.

В этом-то и заключается объяснение парадокса, над которым ломали голову самые выдающиеся умы человечества.

ист.

Объяснение довольно бестолковое и не затрагивает сути. Своему ребенку я бы объяснял по-другому. К примеру, если учесть, что ось колеса (центр окружности), не вращается, то становится понятно, что её (ось) проносит над поверхностью по которой катится колесо. Так же (пропорционально размерам) будет проносить над поверхностью любую точку окружности меньшего диаметра, чем заданный. Другими словами, придерживаясь колесно-дорожной тематики, обороты окружностей конечно совпадают, но точки окружностей разных диаметров пробуксовывают относительно поверхностей, над которыми катятся. Мне кажется так понятней :) Непонятно над чем ломали голову Аристотель и Галилей.
Tags: картинки, хи
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 4 comments